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Abstract

The sunspot cycle is the magnetic cycle of the Sun produced by the
dynamo process. A central idea of the solar dynamo is that the toroidal
and the poloidal magnetic fields of the Sun sustain each other. We discuss
the relevant observational data both for sunspots (which are manifesta-
tions of the toroidal field) and for the poloidal field of the Sun. We point
out how the differential rotation of the Sun stretches out the poloidal
field to produce the toroidal field primarily at the bottom of the con-
vection zone, from where parts of this toroidal field may rise due to
magnetic buoyancy to produce sunspots. In the flux transport dynamo
model, the decay of tilted bipolar sunspot pairs gives rise to the poloidal
field by the Babcock–Leighton mechanism. In this type of model, the
meridional circulation of the Sun, which is poleward at the solar sur-
face and equatorward at the bottom of the convection zone, plays a
crucial role in the transport of magnetic fluxes. We finally point out
that various stochastic fluctuations associated with the dynamo process
may play a key role in producing the irregularities of the sunspot cycle.

Keywords: sunspots, the sunspot cycle, solar magnetic fields, dynamo theory

1 Introduction

The 11-year sunspot cycle is one of the most intriguing natural cycles known
to mankind. Let us begin by looking at Figure 1, which shows how the number
of sunspots seen over the Sun’s surface varied with time during the last four
centuries. Galileo and some of his contemporaries were among the first to
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2 Flux transport dynamo model

Fig. 1 The yearly averaged sunspot number plotted against time since the invention of the
telescope. Credit: David Hathaway.

study sunspots systematically in the beginning of the seventeenth century by
using the newly-discovered telescope. The first entries in Figure 1 in the years
after 1610 are based on the records left by them. Then there was a period
of about 85 years—known as the Maunder minimum—during which sunspots
were rarely seen. After that, the sunspot number has gone up and down in a
roughly periodic manner, with a period of about 11 years, although there have
been lots of irregularities.

The sunspot cycle was discovered by Schwabe (1844). A first clue about
the physical nature of sunspots came with the discovery by Hale (1908) of
Zeeman splitting in the spectra of sunspots, from which it can concluded
that sunspots are regions of strong magnetic field of about 3000 gauss (or
0.3 tesla)—approximately 5000 times stronger that magnetic field near the
geomagnetic poles. The discovery of magnetic fields in sunspots was a momen-
tous discovery in the history of physics, since this was the first time that
somebody conclusively established the existence of magnetic fields outside the
Earth’s environment. Now we know that magnetic fields are ubiquitous in the
astronomical universe, with many planets, stars and galaxies having magnetic
fields.

With the discovery of the magnetic fields in sunspots, it became clear that
the 11-year sunspot cycle is essentially the magnetic cycle of the Sun. Since
the Sun is made of matter in the plasma state, one can presume that this
magnetic cycle is due to some plasma processes. The earliest model of the
sunspot cycle given by Parker (1955a) and developed further by Steenbeck et al
(1966) is now referred to as the αΩ dynamo model. With new observational
and theoretical discoveries coming along, there was need to suitably modify
and upgrade this model to a more comprehensive model known as the flux
transport dynamo model. Although there may still be some critics unwilling to
accept the flux transport dynamo as the appropriate theoretical model for the
sunspot cycle, this model has emerged as the currently favoured theoretical
model of the sunspot cycle and undoubtedly deserves a careful consideration.
The present author was lucky that the most crucial years of growth of this
model roughly coincided with his scientific career and our group could make
some key contributions to the development of this model.
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The aim of this presentation is to introduce the flux transport dynamo
model to plasma physicists who may not have much familiarity with the phe-
nomenology of the sunspot cycle, highlighting some of the contributions from
our group. This is not a comprehensive review of the whole field. The choice of
topics has been, to some extent, guided by the research interests of our group.
We refer the readers to several reviews of the solar dynamo in which the flux
transport dynamo model has been discussed extensively (Charbonneau, 2010,
2014; Choudhuri, 2011; Karak et al, 2014a). We may also mention that increas-
ingly more data are coming about spots and cycles of other solar-like stars,
making it clear that the Sun is not an unusual star in having magnetic activi-
ties. Whether the solar dynamo models can be readily extrapolated to explain
the cycles of all solar-like stars is an important question on which the last word
has not been said yet (Choudhuri, 2017). For a non-technical introduction to
the sunspot cycle and dynamo theory, readers may look at the popular science
book by Choudhuri (2015).

After summarizing the relevant observational data in section 2, we shall
discuss the theory of sunpspot formation in section 3. Then section 4 will be
devoted to introducing the basics of the flux transport dynamo model and
discussing how this model explains the regular periodic features of the sunspot
cycle. The question of how the irregularities of the sunspot cycles arise will
be briefly discussed in section 5. Then our conclusions will be summarized in
section 6.

2 Relevant observational data

About a decade after Hale’s famous discovery of magnetic fields in sunspots
(Hale, 1908), Hale et al (1919) made another important discovery. Often two
sunspots are seen side by side, although sometimes both the sunspots in a pair
may not be equally well formed. Hale et al (1919) found that usually the two
sunspots occurring in a pair have opposite magnetic polarities. The occurrence
of such bipolar sunspot pairs suggests the existence of a sub-surface strand of
magnetic flux which presumably occasionally breaks through the solar surface
as shown in Figure 2. If the two intersections of the strand of magnetic flux
with the surface become the two sunspots, then magnetic field lines would
come out of one sunspot (making its polarity positive) and would go down into
the other sunspot (making its polarity negative).

Figure 3 shows a magnetogram map of the Sun in which white and black
colours respectively indicate regions of positive and negative magnetic polari-
ties, whereas grey colour is put in the regions where the magnetic field is too
weak to be detected by the magnetogram. In the magnetogram map, a bipolar
sunspot pair appears as a white patch and a black patch side by side. We see
in Figure 3 that the right sunspots in the sunspot pairs in the northern hemi-
sphere are positive (white patches), whereas the right sunspots in the sunspot
pairs in the southern hemisphere are negative (black patches). This is the case
for a particular 11-year cycle. In the next cycle, the polarity reverses. The right

songyongliang


songyongliang


songyongliang


songyongliang


songyongliang


songyongliang




Springer Nature 2021 LATEX template

4 Flux transport dynamo model

Fig. 2 A magnetic flux tube piercing through the solar surface and giving rise to two
sunspots of opposite magnetic polarity.

Fig. 3 A magnetogram map of the solar disk, with white, black and grey indicating regions
of positive, negative and very weak magnetic field.

sunspots in the northern hemisphere would become negative in the next cycle
and the right sunspots in the southern hemisphere would become positive.

We point out another thing in Figure 3. The line joining the centres of the
two sunspots in a bipolar sunspot pair tends to be nearly parallel to the solar
equator. Hale’s co-worker Joy, however, noted that there is a systematic tilt
of this line with respect to the equator (the right sunspot in a pair usually
appearing closer to the equator) and that this tilt of sunspot pairs increases
with latitude (Hale et al, 1919). This result is usually known as Joy’s law. The
tilts, however, show a considerable amount of scatter around the mean given
by Joy’s law. As we shall see later, this law of tilts of sunspot pairs plays a
very important role in solar dynamo theory.
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Fig. 4 The two possible components of the solar magnetic field: (a) the toroidal component
and (b) the poloidal component.

For the time being, if we ignore the tilts of bipolar sunspots and assume that
these appear at the same latitude, then Figure 3 suggests the possible existence
of a sub-subsurface magnetic field as shown in Figure 4(a). The magnetic field
with this type of configuration is known as the toroidal field. On the other
hand, Figure 4(b) shows what is called the poloidal field—looking like what
the geomagnetic field is expected to be. Dynamo theory developed historically
by following the mean field approach in which we do an ensemble average of
various physical quantities. When we carry on this kind of averaging, the mean
magnetic field can often be regarded as axi-symmetric, i.e. independent of φ
in spherical coordinates. We can write this mean magnetic field as

B = Bφ(r, θ)eφ +∇× [A(r, θ)eφ]. (1)

The toroidal field is given by Bφ(r, θ)eφ, whereas ∇ × [A(r, θ)eφ] gives the
poloidal field of which the components are given by

Br =
1

r sin θ

∂

∂θ
(sin θA), Bθ = −1

r

∂

∂r
(rA). (2)

It is easy to check that the contours of constant r sin θA give the magnetic
field lines of the poloidal field in the poloidal plane.

In the fundamental paper on dynamo theory, Parker (1955a) suggested that
the sunspot cycle is produced by an oscillation between the toroidal magnetic
field of the Sun and a poloidal field of the type shown in Figure 4(b). The
proper observational proof for the existence of such oscillations came only
several decades later, when solar astronomers had gathered sufficient data for
the polar magnetic field of the Sun. The upper part of Figure 5 shows the
temporal variation of the poloidal field at the two poles of the Sun, whereas the
lower part shows the sunspot number, which is a proxy of the toroidal magnetic
field. Note that the polar field, first discovered by Babcock and Babcock (1955),
is of order a few gauss (keep in mind that 1 gauss = 102 µT)—much weaker
than the 3000-gauss field in the interiors of sunspots. We see a clear oscillation
between the toroidal and the poloidal fields.
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Fig. 5 The variation with time of the magnetic field at the two poles of the Sun, along
with the sunspot number shown at the bottom. Credit: David Hathaway.

Let us now say a few words about the appearance of the poloidal field
on the solar surface. At a particular time, it is found that there would be a
latitude belt over which this field at the surface would have a particular sign.
These latitude belts shift towards the poles with the progress of the sunspot
cycle. This is in contrast to sunspots, which appear at lower and lower latitudes
with the progress of the cycle. Figure 6 is a time-latitude plot in which the
shaded regions indicate the latitudes where sunspots appeared at a particular
time, whereas the colours indicate the longitude-averaged poloidal field at the
surface. During a sunspot cycle, the shades appear closer to the equator with
time, indicating that sunspots appear at lower latitudes with the progress of
the cycle. On the other hand, the colours indicating the longitude-averaged
poloidal field show a trend of poleward migration. Since the shaded regions in
Figure 6 look like a pattern of repeated butterflies, they make up what is called
the butterfly diagram. We note that the polar field is strongest at the time of
the sunspot minimum and reverses at the time of the sunspot maximum. A
reversal of the polar field at the time of a sunspot maximum was first observed
by Babcock (1959). The theoretical explanation of Figure 6 should be a major
goal of a theoretical model of the sunspot cycle.

For the sake of completeness, it may be mentioned that the poloidal field
has been found to be confined in small flux tubes having diameter of the order
of a few hundred km with magnetic field of order 1000 gauss (Stenflo, 1973;
Tsuneta et al, 2008). Early magnetograms did not resolve these small flux
tubes and gave what would be the average value of the poloidal magnetic field
if magnetic fields inside the flux tubes were spread over the solar surface. The
colours in Figure 6 correspond to such average values.

3 Theory of sunspot formation

Before discussing the theory of how sunspots form, let us make a few comments
about the interior structure of the Sun according to what is often called the
standard model of the Sun. The energy generated by nuclear fusion in the
central region of the Sun is transported outward by radiative transfer till a
radius of 0.7R�, where R� is the solar radius. The region from 0.7R� to the
solar surface turns out to be unstable to convection, where heat is transported
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Fig. 6 The time-latitude plot of the longitude-averaged radial magnetic field at the solar
surface superposed on the butterfly diagrams of sunspots indicating the latitudes where
sunspots are seen at a particular time.

Fig. 7 A plasma with vertical magnetic field heated from below. (a) The initial configu-
ration. (b) The likely appearance of the magnetic field after convection starts (the dashed
lines indicating the convective motions in the plasma).

by convection. It is this region, known as the solar convection zone, where
the dynamo action takes place. Sunspots are concentrations of magnetic field
sitting at the top of this turbulent convection zone.

Why do magnetic fields remain concentrated within the sunspots instead of
filling up all space? To address this question, we need to consider the interac-
tion between the magnetic field and the convection. This subject is known as
magnetoconvection. Chandrasekhar (1952) worked out the linear theory of this
subject. Simulations to study the nonlinear evolution of the system were car-
ried out later (Weiss, 1981). Consider that a plasma with a vertical magnetic
field is heated from below, as sketched in Figure 7(a). The magnetic tension
tries to oppose convection. Eventually, when convection is initiated by making
the vertical temperature gradient sufficiently strong, space gets divided into
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Fig. 8 The generation of the toroidal field by the stretching of a poloidal field line by
differential rotation. (a) An initial poloidal field line, with small arrows indicating rotation
varying with latitude. (b) A sketch of the field line after it has been stretched by the faster
rotation near the equatorial region.

two kinds of regions, as shown in Figure 7(b). From some regions, the magnetic
field lines are expelled and convection can take place freely. In other regions, the
magnetic field lines are concentrated and convection gets suppressed. Sunspots
are presumably such regions of concentrated magnetic field—known as mag-
netic flux tubes—within which the convective heat transport is inhibited. The
tops of such regions appear darker compared to the surroundings because of
the decreased heat transport.

The Sun does not rotate like a solid body, the equatorial region having
a higher angular velocity. It has been realized from the early years of MHD
research that magnetic field lines would be nearly “frozen” in the plasma in
a large astrophysical body like the Sun (see, for example, Choudhuri (1998),
section 14.2) and that the differential rotation would stretch out a poloidal
field to produce a produce a toroidal field, as sketched in Figure 8. It should be
apparent from this figure that the toroidal field will have opposite signs in the
two hemispheres. If parts of this toroidal field rise to the surface, then we would
have bipolar sunspot pairs with opposite polarity in the two hemispheres, in
agreement with observations presented in Figure 3. Parker (1955b) realized
that the pressure of the magnetic field may cause a region of plasma with strong
magnetic field to expand, giving rise to what is called magnetic buoyancy. If
the magnetic field exists in the form of a magnetic flux tube, then the pressure
balance condition between its inside and outside would give

pe = pi +
B2

2µ0
, (3)

where pe and pi are the gas pressures in the exterior and the interior of the
flux tube, while B is the magnetic field inside the flux tube. It follows from (3)
that pi < pe, which implies that the interior and exterior densities also may
often, though not always, satisfy the relation ρi < ρe. We shall not get into a
discussion of the circumstances under which this may happen. If the interior
density in some regions of the flux tube becomes less than the exterior density,
then those regions of the flux tube become buoyant and rise against gravity.
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Fig. 9 The map of angular velocity distribution in a poloidal plane inside the Sun, as
obtained by helioseismology. From Howe et al (2005), as given in Basu (2016).

One of the major breakthroughs in modern astrophysics is that
helioseismology—the study of solar oscillations—has succeeded in mapping the
differential rotation in the interior of the Sun. Figure 9 shows the map of angu-
lar velocity distribution found by helioseismology. It can be seen in this map
that the bottom of the convection zone at 0.7R� indicated by the dashed cir-
cle is a region of concentrated differential rotation, where the angular velocity
changes rather sharply in the radial direction. We believe that the toroidal
magnetic field is primarily generated at the bottom of the convection zone
and then parts of it rise to the surface due to magnetic buoyancy, as shown in
Figure 10. The Coriolis force due to the rotation of the Sun may act on the
rising part of the flux tube and make it tilted, in accordance with Joy’s law.

The rise of flux tubes due to magnetic buoyancy was first studied by doing
simulations on the basis of the thin flux tube equation (Spruit, 1981; Choud-
huri, 1990). The first such simulation in a 2D planar geometry was carried out
by Moreno-Insertis (1986). We were the first to study the buoyant rise of flux
tubes in a spherical geometry by incorporating the Coriolis force (Choudhuri,
1989) and gave a theoretical explanation of Joy’s law (D’Silva and Choudhuri,
1993) about three-quarters of a century after its observational discovery (Hale
et al, 1919). We found that the effect of the Coriolis force much stronger than
what was suspected before (Choudhuri and Gilman, 1987) and its effects would
have been much larger than what is seen in observations unless the magnetic
field inside the buoyant flux tubes was sufficiently strong. By requiring that
theory matches observations, we were able to conclude that the magnetic field
at the bottom of the convection zone has to be as strong as 105 gauss (D’Silva
and Choudhuri, 1993). This result was confirmed by the simulations of other
groups (Fan et al, 1993; Caligari et al, 1995). As we shall point out in section 4,
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Fig. 10 The production of a tilted bipolar sunspot pair on the solar surface by the buoyant
rise of a part of the toroidal field. From Dikpati and Gilman (2006).

this value of the toroidal field was crucial in constraining some aspects of the
dynamo process.

Lastly, it may be mentioned that some of the later simulations of the
buoyant rise of flux tubes went beyond the thin flux tube approach and were
based on the full MHD equations. Rather than getting into a discussion of this
subject, we refer the interested reader to the excellent review by Fan (2009).

4 The basics of the flux transport dynamo
model

We have discussed how the poloidal field can be stretched by differential rota-
tion to produce the toroidal field, from which sunspots form. To explain the
observed oscillation between the poloidal and the toroidal fields, we need a
mechanism for producing back the poloidal field from the toroidal field. We
invoke the idea of Babcock (1961) and Leighton (1969) on how the poloidal
field can be generated from the decay of a tilted bipolar sunspot pair, like the
pair shown in Figure 10. Suppose the sunspot at the higher latitude in a pair
has positive (negative) polarity. Typical sunspots live for a few days. When this
sunspot pair decays, more positive (negative) polarity is spread around at the
higher latitude and the opposite polarity at the lower latitude. What we thus
get is a poloidal field. This Babcock–Leighton mechanism for the generation of
the poloidal field is somewhat different from the α-effect (Parker, 1955a; Steen-
beck et al, 1966), in which helical turbulence twists the toroidal field to produce
the poloidal field. If the toroidal field is as strong 105 gauss, as suggested by
buoyancy simulations, then such twisting is not possible and we believe that
the Babcock–Leighton mechanism is the dominant mechanism for generating
the poloidal field in the Sun. It is possible that the α-effect is also present in
the regions of weak magnetic field along with the dominant Babcock–Leighton
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mechanism. In fact, the α-effect may be necessary for the dynamo to recover
from grand minima like the Maunder minimum when sunspots disappear and
the Babcock–Leighton mechanism may be absent (Karak and Choudhuri, 2013;
Passos et al, 2014).

We now can think of a minimalistic dynamo model in which the toroidal and
poloidal magnetic fields sustain each other through a feedback loop: differential
rotation producing the toroidal field from the poloidal field and the Babcock-
Leighton mechanism producing the poloidal field back from the toroidal field
(which is responsible for the tilted bipolar sunspots). It turns out that this
minimalistic model leads to a dynamo wave propagating poleward, in accor-
dance with what is known as the Parker–Yoshimura sign rule (Parker, 1955a;
Yoshimura, 1975). This means that sunspots should appear at higher latitudes
with the progress of the cycle, opposite of what is observed (Choudhuri et al,
1995). It is clear that we need something else to turn things around. The
meridional circulation of the Sun to be discussed in the next paragraph turns
out to be this ‘something else’.

The Sun is known to have a plasma flow at the surface from the equator
to the poles, the maximum amplitude of the flow at mid-latitudes being about
20 m s−1. As we do not expect the plasma to pile up near the solar poles,
this poleward plasma flow must be a part of a larger meridional circulation
pattern having an equatorward return flow somewhere below the surface bring-
ing back the plasma that has flown to the poles. Since the turbulent stresses
in the convection zone are responsible the large-scale flows there (Choudhuri,
2021b), we expect the meridional circulation to be confined within the convec-
tion zone. Dynamo models are found to give best results if the return flow of
the meridional circulation is at the bottom of the convection zone, although
some studies have been done with more general kinds of flows (Hazra et al,
2014). Within the last few years, helioseismology has confirmed the existence
of the return flow at the bottom of the convection zone (Rajaguru and Antia,
2015; Gizon et al, 2020), validating different theoretical groups who have been
constructing dynamo models assuming such a flow for many years.

Figure 11 shows a cartoon summarizing what is called the flux transport
dynamo model. The green colour indicates the region at the bottom of the con-
vection zone where differential rotation produces the strong toroidal field. The
red arrows represent magnetic buoyancy due to which the toroidal field rises
to the solar surface to produce sunspots. The brown region near the surface
is where the poloidal field is produced by the Babcock-Leighton mechanism.
The blue curves indicate the all-important meridional circulation. The toroidal
field produced at the bottom of the convection zone is advected by the merid-
ional circulation there, ensuring that sunspots appear closer to the equator
with the progress of the sunspot cycle. On the other hand, the poleward merid-
ional circulation near the surface advects the poloidal field generated there, in
agreement with observations.

Although some basic ideas of this model were suggested on the basis of a 1D
model in an early paper by Wang et al (1991), the first 2D calculations based on



Springer Nature 2021 LATEX template

12 Flux transport dynamo model

Fig. 11 A cartoon indicating the essential ingredients of the flux transport dynamo model.

this model were done in the mid-1990s (Choudhuri et al, 1995; Durney, 1995).
The paper by Choudhuri et al (1995), perhaps the most important paper in
the present author’s scientific career, convincingly showed that the meridional
circulation can indeed turn things around and make sunspots appear at lower
latitudes with the progress of the cycle rather than at higher latitudes which
would happen in the absence of the meridional circulation. This established
the flux transport dynamo as a promising model of the solar dynamo and
several groups started studying different aspects of this model within the next
few years (Durney, 1997; Dikpati and Charbonneau, 1999; Küker et al, 2001;
Dikpati and Gilman, 2001; Nandy and Choudhuri, 2001, 2002; Bonanno et al,
2002; Guerrero and Muñoz, 2004; Chatterjee et al, 2004).

The flux transport dynamo model was first developed by doing calculations
with the help of mean field equations obtained by averaging over the turbu-
lence in the convection zone. The mean field equation for the evolution of the
magnetic field is the famous dynamo equation

∂B

∂t
= ∇× (v ×B) +∇× (αB) + λT∇2B, (4)

where λT is the turbulent diffusivity inside the convection zone and α is the
parameter which governs the generation of the poloidal field (see, for example,
Choudhuri (1998), Chapter 16). The parameter α for the Babcock–Leighton
mechanism has to be specified somewhat differently compared to the classical
α-effect proposed by Parker (1955a) and Steenbeck et al (1966). The mean
magnetic field written in the form (1) can be substituted in (4), whereas the
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Fig. 12 A theoretical time-latitude plot from Chatterjee et al (2004) based on their dynamo
calculation. The shaded regions indicate the latitudes where sunspots are seen at different
times, whereas the contours indicate the values of the radial magnetic field at the solar
surface.

velocity has to be written as

v = vm + r sin θΩ(r, θ)eφ, (5)

where Ω(r, θ) is the angular velocity in the interior of the Sun and vm is the
velocity of meridional circulation having components in r and θ directions.
On substituting (1) and (5) into (4), some reasonable assumptions lead to the
following coupled equations for the poloidal and the toroidal fields

∂A

∂t
+

1

s
(vm.∇)(sA) = λT

(
∇2 − 1

s2

)
A+ αB, (6)

∂B

∂t
+

1

r

[
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

]
= λT

(
∇2 − 1

s2

)
B+s(Bp.∇)Ω+

1

r

dλT
dr

∂

∂r
(rB),

(7)
where s = r sin θ and Bp is the poloidal field with the components given by (2).
To understand the behaviour of the flux transport dynamo, we have to solve
(6) and (7) simultaneously after suitably specifying the various parameters Ω,
vm, λT and α.

To get an idea about the nature of the solutions of these equations, look at
Figure 12 taken from Chatterjee et al (2004). It is a theoretical time-latitude
plot to be compared with the observational plot shown in Figure 6. The shaded
regions in both the plots indicate sunspots. The contours of constant radial
field at the surface seen Figure 12 have to be compared with the colours in
Figure 6. Given the fact that Figure 12 was about the first such theoretical
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plot produced from the flux transport dynamo model, hopefully all readers
will agree that the fit between theory and observations was impressive.

We have pointed out in section 1 about the evidence of magnetic cycles in
other solar-like stars. The difficulty of making models of these stellar dynamos
is that we do not have any detailed information about the differential rotation
Ω or the meridional circulation vm for other stars besides the Sun. How-
ever, these large-scale fluid flows can be calculated from mean field models of
the large-scale flows (Kitchatinov and Ruediger, 1995; Kitchatinov and Olem-
skoy, 2012) and then used for constructing flux transport dynamo models of
solar-like stars (Karak et al, 2014b). Such models can match many aspects
of observational data. However, there are still doubts whether the flux trans-
port dynamo model is universally applicable to all solar-like stars (Choudhuri,
2017).

5 Modelling irregularities of the sunspot cycle

We have given some idea of how the regular periodic features of the sunspot
cycle are explained with the flux transport dynamo model. A look at Figure 1
makes it clear that the sunspot cycle is only approximately periodic. We shall
now turn our attention to the question of how the flux transport dynamo
model can be applied to explain the observed irregularities of the sunspot
cycle. See a review by Choudhuri (2014) on this subject. An early idea was
that the irregularities of the sunspot cycle are manifestations of chaos resulting
from the nonlinearities of the dynamo problem (Weiss et al, 1984). However,
it appears that the most obvious kinds of nonlinearities would not produce
the sustained irregularities we observe, and some stochastic fluctuations may
be the more appropriate cause of the cycle irregularities (Choudhuri, 1992;
Hoyng, 1993). We should point out that there are some irregularities which
possibly result from nonlinear chaos. For example, the Gnevyshev–Ohl effect—
the fact that the odd-numbered cycle was stronger than the previous even-
numbered cycle for several cycles—is probably a manifestation of nonlinear
chaos (Charbonneau et al, 2005, 2007). Since stochastic fluctuations are likely
to be the more important source for sunspot cycle irregularities, let us now
discuss how these fluctuations arise.

As we have pointed out, a crucial ingredient of the flux transport dynamo is
the Babcock–Leighton mechanism, which involves the tilts of bipolar sunspot
pairs as given by Joy’s law. However, Joy’s law happens to be a law of statistical
averages, there being a random distribution of tilt angles around the average
given by Joy’s law (Stenflo and Kosovichev, 2012). This randomness presum-
ably arises due to the effect of turbulence on the magnetic flux tubes rising
through the convection zone (Longcope and Choudhuri, 2002) and introduces
fluctuations in the Babcock–Leighton mechanism. Choudhuri et al (2007) iden-
tified these fluctuations in the Babcock–Leighton mechanism arising out of the
randomness in the sunspot tilt angles as the main source of irregularities in the
sunspot cycle and developed a method for predicting the next upcoming cycle.
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Fig. 13 The predictions for the peak of cycle 24 by Dikpati and Gilman (2006) and Choud-
huri et al (2007) are indicated respectively by the upper star and the lower star in this
plot showing the variation of sunspot number with time during that era. The circle of the
horizontal axis indicates the time when these predictions were made.

Different methods have been suggested over the years for the prediction of
a sunspot cycle before its onset. After the development of the flux transport
dynamo model, whether it is possible to predict a future cycle based on this
theoretical dynamo model became an important question. Dikpati and Gilman
(2006) proposed a method of making such predictions which suggested that
the upcoming cycle 24 would be a very strong cycle. Choudhuri et al (2007)
and Jiang et al (2007) pointed out several logical flaws in the Dikpati–Gilman
arguments and developed an alternative methodology for predicting the next
cycle based on the version of the flux transport dynamo model they had devel-
oped. They predicted a rather low value for the peak of the sunspot cycle
24, which turned out to be the first successful dynamo-based prediction of a
sunspot cycle before its onset. Figure 13 is a plot of observed sunspot num-
bers along with the two theoretical predictions of cycle 24 due to Dikpati and
Gilman (2006) and Choudhuri et al (2007).

We now realize that, apart from the fluctuations in the Babcock–Leighton
mechanism, fluctuations in the meridional circulation also can be an additional
source of irregularities in the sunspot cycles. The period of the flux trans-
port dynamo depends on the strength of the meridional circulation, periods
becoming shorter when the circulation is stronger (Dikpati and Charbonneau,
1999; Nandy and Choudhuri, 2001). If there are fluctuations in the meridional
circulation, that would certainly introduce irregularities in the sunspot cycle
(Karak, 2010). Especially, durations of different cycles would vary due to such
fluctuations. From the historical data of past cycles, Karak and Choudhuri



Springer Nature 2021 LATEX template

16 Flux transport dynamo model

(2011) indeed found indirect evidence for fluctuations in the meridional circu-
lation in the past. Diffusion acting on longer cycles may make them weaker,
giving rise to an anti-correlation between the cycle duration and strength. This
anti-correlation readily leads to an explanation of the Waldmeier effect that
stronger cycles rise faster, because they are shorter due to this anti-correlation
(Karak and Choudhuri, 2011).

Taking the fluctuations in the Babcock–Leighton mechanism and the fluc-
tuations in the meridional circulation as the two main sources of irregularities
in the sunspot cycles, Choudhuri and Karak (2012) developed a comprehen-
sive model of grand minima like the Maunder minimum during the seventeenth
century, which can be seen in Figure 1. There is now indirect evidence (from
the analysis of polar ice cores) that there have been about 27 grand minima in
the last 11,000 yr (Usoskin et al, 2007). The results of Choudhuri and Karak
(2012) are in broad agreement with this. With the realization that the fluctua-
tions in the meridional circulation are so important in producing irregularities
in the sunspot cycle, it is clear that these fluctuations have to be taken into
consideration along with the fluctuations in the Babcock–Leighton mechanism
for the prediction of future cycles. How this can be done has been discussed
by Hazra and Choudhuri (2019).

Lastly, we may mention that two papers from our group—Choudhuri et al
(2007) on the prediction of sunspot cycles and Choudhuri and Karak (2012) on
the grand minima—were selected as “Editors’ suggestion” in Physical Review
Letters, showing that the subject of irregularities of the sunspot cycle is of
considerable interest to the physics community.

6 Concluding remarks

The basic idea of the solar dynamo is that the sunspot cycle is produced by an
oscillation between the toroidal and poloidal components of the solar magnetic
field. The toroidal field, from which the sunspots arise due to magnetic buoy-
ancy, is generated by the stretching of the poloidal field by differential rotation.
How the poloidal field arises from the toroidal field is less certain. The cur-
rent flux transport dynamo models invoke the Babcock–Leighton mechanism
in the place of the older α-effect which can work only if the toroidal field is
much weaker what we now believe it to be. The meridional circulation, which
is poleward at the surface and is expected to be equatorward at the bottom of
the convection zone, plays a crucial role in the flux transport dynamo model
in ensuring that the solar magnetic fields are transported in agreement with
observations. We have also discussed how the irregularities in the Babcock–
Leighton mechanism and in the meridional circulation may give rise to the
observed irregularities in the sunspot cycle.

The flux transport dynamo model developed historically by following the
mean field approach, in which we average over turbulence in the convection
zone. Equation (4), which leads to Equations (6) and (7), is based on such
mean field approach. Using the observational input for the solar differential
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rotation Ω and the meridional circulation vm in Equation (5), we can specify
the velocity field v and follow the kinematic approach of solving our equations
only for the magnetic field. As we have already pointed out in section 4, we
have to go beyond the kinematic approach in modelling stellar dynamos for
which we do not have information about the large-scale flows. Even for the
Sun, we have to go beyond the kinematic approach if we want to study the
observed variations of the large-scale flows with the cycle due to the back-
reaction of the dynamo-generated magnetic field (Rempel, 2006; Choudhuri,
2021b). How the observed cyclic variation of the differential rotation, known
as torsional oscillations, arises in the flux transport dynamo model has been
studied by Chakraborty et al (2009). The meridional circulation is found to
become weaker at the time of the sunspot maximum (Hathaway and Right-
mire, 2010). While the variation of meridional circulation can be included in
the dynamo model by introducing a simple quenching by the magnetic field
(Karak and Choudhuri, 2012), a proper theory requires the solving of the
equation for meridional circulation along with the dynamo equations (Hazra
and Choudhuri, 2017). It may noted that the mean field models of the dif-
ferential rotation and the meridional circulation show them to be intimately
connected with each other. For example, to explain the shear layer of differen-
tial rotation just below the solar surface seen in Figure 9, we need to analyze
the thermal wind balance equation arising in the theory of the meridional
circulation (Choudhuri, 2021a; Jha and Choudhuri, 2021).

Within the last few decades, tremendous advances have been made in the
direct numerical simulation (DNS) of the geodynamo starting with the path-
breaking work by Glatzmaier and Roberts (1995). While the mean field models
played a historically important role in the growth of the flux transport dynamo
model, often a question is asked whether these models still remain relevant
in the present era of DNS. Indeed, some impressive DNS calculations of the
solar dynamo have been done from around 2010 onwards (Ghizaru et al, 2010;
Brown et al, 2010). However, simulating the solar dynamo is much more chal-
lenging than simulating the geodynamo because of the wide ranges of length
and time scales involved. Also, the stratification of the convection zone within
which the density and pressure vary by several orders of magnitude makes real-
istic simulations very difficult. Additionally, in a kinematic mean field model,
one can specify the differential rotation and meridional circulation from obser-
vational data. In contrast, in a DNS, these large-scale flows have to come out
of the simulations and, until one gets the large-scale flows correctly, there is
no hope of buidling a realistic model of the dynamo. Because of these reasons,
simulations of the solar dynamo are still of rather exploratory nature. We still
have to depend on the mean field model for providing detailed explanations of
different aspects of observational data.

One limitation of 2D mean field models is that the Babcock–Leighton mech-
anism is an inherently 3D mechanism and can be included in 2D models only
through crude approximations. In fact, there has been some debate about the
best way handling the Babcock–Leighton mechanism within the framework of
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Fig. 14 The Laboratory for Astrophysics and Space Research (LASR) in the University
of Chicago campus, as it was in the 1980s. The upper left corner room was Parker’s office,
whereas the room next to it was my office. The upper right corner room was Chandrasekhar’s
office.

2D models (Durney, 1997; Nandy and Choudhuri, 2001; Muñoz-Jaramillo et al,
2010). Rather than going all the way to full 3D simulations, one can think of
constructing 3D kinematic models (Yeates and Muñoz-Jaramillo, 2013; Miesch
and Dikpati, 2014; Hazra et al, 2017). In such models, the large-scale flows
are specified on the basis of the observational data, whereas the evolution of
the magnetic field is treated in 3D so that the Babcock–Leighton mechanism
is modelled realistically by considering the decay of tilted bipolar sunspots.

While 2D kinematic mean field models have provided explanations for
many aspects of the sunspot cycle, we certainly need to go beyond them if
we want our solar dynmao models to be sufficiently realistic. Perhaps 3D
kinematic models happen to be the next important step. Ultimately our goal
should be to carry on 3D simulations of the large-scale flows and the solar
dynamo together. However, we probably have to wait for a few years before
fully realistic simulations of this kind can be carried out in a self-consistent
manner.

7 A personal note

Let me end by mentioning that this paper is based on my lecture given on
the occasion of the Subrahmanyan Chandrasekhar Prize of Plasma Physics
being bestowed on me. A Prize named after Professor Chandrasekhar has a
special personal significance for me, since I am presumably the first recipient
of this Prize who had Chandrasekhar himself as a professor at the University
of Chicago. As a first-year graduate student there, I took a course on general
relativity taught by him.

I dedicate this paper to the memory of my PhD supervisor E.N. (Gene)
Parker, who first initiated me to the field of plasma astrophysics. He passed
away a few months ago. Figure 14 shows the Laboratory for Astrophysics and
Space Research in the University of Chicago campus, where we all had our
offices. The left corner room in the upper floor was Parker’s office and the right
corner room was Chandrasekhar’s office. My office was next to Parker’s office.

songyongliang


songyongliang
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Working in that office for four years, I had the rare privilege of observing these
two giants of theoretical astrophysics closely.

Whatever little I have achieved in science during the last few years has
been possible because of the succession of exceptionally brilliant students
who decided to work under my supervision for their PhD—Sydney D’Silva,
Mausumi Dikpati, Dibyendu Nandy, Piyali Chatterjee, Jie Jiang, Bidya Karak,
Gopal Hazra. I am grateful to my colleague Rahul Pandit who insisted on nom-
inating me for the Chandrasekhar Prize against my initial hesitation. I thank
Eric Priest, Kazunari Shibata, Paul Charbonneau, Jie Jiang and Durgesh
Tripathi for their support letters.

Apart from those who helped me professionally in my scientific career, my
journey has been possible due to the support and encouragement of many
others—family members, teachers, friends. My parents encouraged me from
my childhood to take up an academic career. I would not have reached here
today without the strong support of my wife Mahua.
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Bonanno A, Elstner D, Rüdiger G, et al (2002) Parity properties
of an advection-dominated solar alpha 2 Omega-dynamo. Astron.
Astrophys. 390:673–680. https://doi.org/10.1051/0004-6361:20020590,
https://arxiv.org/abs/arXiv:astro-ph/0204308 [astro-ph]

Brown BP, Browning MK, Brun AS, et al (2010) Persistent Magnetic Wreaths
in a Rapidly Rotating Sun. Astrophys. J. 711:424–438. https://doi.org/10.
1088/0004-637X/711/1/424, https://arxiv.org/abs/arXiv:1011.2831 [astro-
ph.SR]

Caligari P, Moreno-Insertis F, Schüssler M (1995) Emerging flux tubes in
the solar convection zone. 1: Asymmetry, tilt, and emergence latitude.
Astrophys. J. 441:886–902. https://doi.org/10.1086/175410

Chakraborty S, Choudhuri AR, Chatterjee P (2009) Why Does the Sun’s
Torsional Oscillation Begin before the Sunspot Cycle? Physical Review

https://doi.org/10.1086/146726
https://doi.org/10.1086/147060
https://doi.org/10.1086/145994
https://doi.org/10.1007/s41116-016-0003-4
https://arxiv.org/abs/1606.07071
https://doi.org/10.1051/0004-6361:20020590
https://arxiv.org/abs/astro-ph/0204308
https://doi.org/10.1088/0004-637X/711/1/424
https://doi.org/10.1088/0004-637X/711/1/424
https://arxiv.org/abs/1011.2831
https://doi.org/10.1086/175410


Springer Nature 2021 LATEX template

20 Flux transport dynamo model

Letters 102(4):041102. https://doi.org/10.1103/PhysRevLett.102.041102,
https://arxiv.org/abs/arXiv:0907.4842 [astro-ph.SR]

Chandrasekhar S (1952) On the inhibition of convection by a mag-
netic field. The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science 43(340):501–532. https://doi.org/10.1080/
14786440508520205, URL http://dx.doi.org/10.1080/14786440508520205,
https://arxiv.org/abs/http://dx.doi.org/10.1080/14786440508520205

Charbonneau P (2010) Dynamo Models of the Solar Cycle. Living Rev Solar
Phys 7:3. https://doi.org/10.12942/lrsp-2010-3

Charbonneau P (2014) Solar Dynamo Theory. Annual Rev. of
Astron. and Astrophys. 52:251–290. https://doi.org/10.1146/
annurev-astro-081913-040012

Charbonneau P, St-Jean C, Zacharias P (2005) Fluctuations in Babcock-
Leighton Dynamos. I. Period Doubling and Transition to Chaos. Astro-
phys. J. 619:613–622. https://doi.org/10.1086/426385

Charbonneau P, Beaubien G, St-Jean C (2007) Fluctuations in Babcock-
Leighton Dynamos. II. Revisiting the Gnevyshev-Ohl Rule. Astrophys. J.
658(1):657–662. https://doi.org/10.1086/511177

Chatterjee P, Nandy D, Choudhuri AR (2004) Full-sphere simulations of a
circulation-dominated solar dynamo: Exploring the parity issue. Astron.
Astrophys. 427:1019–1030. https://doi.org/10.1051/0004-6361:20041199,
https://arxiv.org/abs/astro-ph/0405027

Choudhuri AR (1989) The evolution of loop structures in flux rings within the
solar convection zone. Solar Phys. 123:217–239. https://doi.org/10.1007/
BF00149104

Choudhuri AR (1990) A correction to Spruit’s equation for the dynamics of
thin flux tubes. Astron. Astrophys. 239(1-2):335–339

Choudhuri AR (1992) Stochastic fluctuations of the solar dynamo. Astron.
Astrophys. 253:277–285

Choudhuri AR (1998) The physics of fluids and plasmas : an introduction for
astrophysicists (Cambridge: Cambridge University Press)

Choudhuri AR (2011) The origin of the solar magnetic cycle.
Pramana 77:77–96. https://doi.org/10.1007/s12043-011-0113-4,
https://arxiv.org/abs/arXiv:1103.3385 [astro-ph.SR]

Choudhuri AR (2014) The irregularities of the sunspot cycle and their

https://doi.org/10.1103/PhysRevLett.102.041102
https://arxiv.org/abs/0907.4842
https://doi.org/10.1080/14786440508520205
https://doi.org/10.1080/14786440508520205
http://dx.doi.org/10.1080/14786440508520205
https://arxiv.org/abs/http://dx.doi.org/10.1080/14786440508520205
https://doi.org/10.12942/lrsp-2010-3
https://doi.org/10.1146/annurev-astro-081913-040012
https://doi.org/10.1146/annurev-astro-081913-040012
https://doi.org/10.1086/426385
https://doi.org/10.1086/511177
https://doi.org/10.1051/0004-6361:20041199
https://arxiv.org/abs/astro-ph/0405027
https://doi.org/10.1007/BF00149104
https://doi.org/10.1007/BF00149104
https://doi.org/10.1007/s12043-011-0113-4
https://arxiv.org/abs/1103.3385


Springer Nature 2021 LATEX template

Flux transport dynamo model 21

theoretical modelling. Indian Journal of Physics 88(9):877–884. https://
doi.org/10.1007/s12648-014-0481-y, https://arxiv.org/abs/arXiv:1312.3408
[astro-ph.SR]

Choudhuri AR (2015) Nature’s third cycle: a story of sunspots (Oxford: Oxford
University Press). https://doi.org/10.1093/acprof:oso/9780199674756.001.
0001

Choudhuri AR (2017) Starspots, stellar cycles and stellar flares: Lessons
from solar dynamo models. Science China Physics, Mechanics, and
Astronomy 60(1):19601. https://doi.org/10.1007/s11433-016-0413-7,
https://arxiv.org/abs/arXiv:1612.02544 [astro-ph.SR]

Choudhuri AR (2021a) A Theoretical Estimate of the Pole-Equator Tem-
perature Difference and a Possible Origin of the Near-Surface Shear
Layer. Solar Phys. 296(2):37. https://doi.org/10.1007/s11207-021-01784-7,
https://arxiv.org/abs/arXiv:2008.02983 [astro-ph.SR]

Choudhuri AR (2021b) The meridional circulation of the Sun: Observa-
tions, theory and connections with the solar dynamo. Science China
Physics, Mechanics, and Astronomy 64(3):239601. https://doi.org/10.1007/
s11433-020-1628-1, https://arxiv.org/abs/arXiv:2008.09347 [astro-ph.SR]

Choudhuri AR, Gilman PA (1987) The influence of the Coriolis force on flux
tubes rising through the solar convection zone. Astrophys. J. 316:788–800.
https://doi.org/10.1086/165243

Choudhuri AR, Karak BB (2012) Origin of Grand Minima in Sunspot Cycles.
Physical Review Letters 109:171103. https://doi.org/10.1103/PhysRevLett.
109.171103, https://arxiv.org/abs/arXiv:1208.3947 [astro-ph.SR]

Choudhuri AR, Schüssler M, Dikpati M (1995) The solar dynamo with
meridional circulation. Astron. Astrophys. 303:L29–L32

Choudhuri AR, Chatterjee P, Jiang J (2007) Predicting Solar Cycle 24 With a
Solar Dynamo Model. Physical Review Letters 98:131103. https://doi.org/
10.1103/PhysRevLett.98.131103, https://arxiv.org/abs/astro-ph/0701527

Dikpati M, Charbonneau P (1999) A Babcock-Leighton Flux Transport
Dynamo with Solar-like Differential Rotation. Astrophys. J. 518:508–520.
https://doi.org/10.1086/307269

Dikpati M, Gilman PA (2001) Flux-Transport Dynamos with α-Effect from
Global Instability of Tachocline Differential Rotation: A Solution for Mag-
netic Parity Selection in the Sun. Astrophys. J. 559(1):428–442. https:
//doi.org/10.1086/322410

https://doi.org/10.1007/s12648-014-0481-y
https://doi.org/10.1007/s12648-014-0481-y
https://arxiv.org/abs/1312.3408
https://doi.org/10.1093/acprof:oso/9780199674756.001.0001
https://doi.org/10.1093/acprof:oso/9780199674756.001.0001
https://doi.org/10.1007/s11433-016-0413-7
https://arxiv.org/abs/1612.02544
https://doi.org/10.1007/s11207-021-01784-7
https://arxiv.org/abs/2008.02983
https://doi.org/10.1007/s11433-020-1628-1
https://doi.org/10.1007/s11433-020-1628-1
https://arxiv.org/abs/2008.09347
https://doi.org/10.1086/165243
https://doi.org/10.1103/PhysRevLett.109.171103
https://doi.org/10.1103/PhysRevLett.109.171103
https://arxiv.org/abs/1208.3947
https://doi.org/10.1103/PhysRevLett.98.131103
https://doi.org/10.1103/PhysRevLett.98.131103
https://arxiv.org/abs/astro-ph/0701527
https://doi.org/10.1086/307269
https://doi.org/10.1086/322410
https://doi.org/10.1086/322410


Springer Nature 2021 LATEX template

22 Flux transport dynamo model

Dikpati M, Gilman PA (2006) Simulating and Predicting Solar Cycles Using
a Flux-Transport Dynamo. Astrophys. J. 649:498–514. https://doi.org/10.
1086/506314

D’Silva S, Choudhuri AR (1993) A theoretical model for tilts of bipolar
magnetic regions. Astron. Astrophys. 272:621–633

Durney BR (1995) On a Babcock-Leighton dynamo model with a deep-seated
generating layer for the toroidal magnetic field. Solar Phys. 160:213–235.
https://doi.org/10.1007/BF00732805

Durney BR (1997) On a Babcock-Leighton Solar Dynamo Model with a Deep-
seated Generating Layer for the Toroidal Magnetic Field. IV. Astrophys. J.
486:1065–1077

Fan Y (2009) Magnetic Fields in the Solar Convection Zone. Living Reviews
in Solar Physics 6:4. https://doi.org/10.12942/lrsp-2009-4

Fan Y, Fisher GH, Deluca EE (1993) The origin of morphological asymme-
tries in bipolar active regions. Astrophys. J. 405:390–401. https://doi.org/
10.1086/172370

Ghizaru M, Charbonneau P, Smolarkiewicz PK (2010) Magnetic Cycles in
Global Large-eddy Simulations of Solar Convection. Astrophys. J. Lett.
715(2):L133–L137. https://doi.org/10.1088/2041-8205/715/2/L133

Gizon L, Cameron RH, Pourabdian M, et al (2020) Meridional flow in the Sun’s
convection zone is a single cell in each hemisphere. Science 368(6498):1469–
1472. https://doi.org/10.1126/science.aaz7119

Glatzmaier GA, Roberts PH (1995) A three-dimensional self-consistent com-
puter simulation of a geomagnetic field reversal. Nature 377(6546):203–209.
https://doi.org/10.1038/377203a0

Guerrero GA, Muñoz JD (2004) Kinematic solar dynamo models with a deep
meridional flow. Mon. Not. Roy. Astron. Soc. 350:317–322. https://doi.org/
10.1111/j.1365-2966.2004.07655.x, https://arxiv.org/abs/astro-ph/0402097

Hale GE (1908) On the Probable Existence of a Magnetic Field in Sun-Spots.
Astrophys. J. 28:315. https://doi.org/10.1086/141602

Hale GE, Ellerman F, Nicholson SB, et al (1919) The Magnetic Polarity of
Sun-Spots. Astrophys. J. 49:153. https://doi.org/10.1086/142452

Hathaway DH, Rightmire L (2010) Variations in the Sun’s Meridional Flow
over a Solar Cycle. Science 327:1350–. https://doi.org/10.1126/science.
1181990

https://doi.org/10.1086/506314
https://doi.org/10.1086/506314
https://doi.org/10.1007/BF00732805
https://doi.org/10.12942/lrsp-2009-4
https://doi.org/10.1086/172370
https://doi.org/10.1086/172370
https://doi.org/10.1088/2041-8205/715/2/L133
https://doi.org/10.1126/science.aaz7119
https://doi.org/10.1038/377203a0
https://doi.org/10.1111/j.1365-2966.2004.07655.x
https://doi.org/10.1111/j.1365-2966.2004.07655.x
https://arxiv.org/abs/astro-ph/0402097
https://doi.org/10.1086/141602
https://doi.org/10.1086/142452
https://doi.org/10.1126/science.1181990
https://doi.org/10.1126/science.1181990


Springer Nature 2021 LATEX template

Flux transport dynamo model 23

Hazra G, Choudhuri AR (2017) A theoretical model of the variation
of the meridional circulation with the solar cycle. Mon. Not. Roy.
Astron. Soc. 472(3):2728–2741. https://doi.org/10.1093/mnras/stx2152,
https://arxiv.org/abs/arXiv:1708.05204 [astro-ph.SR]

Hazra G, Choudhuri AR (2019) A New Formula for Predicting Solar
Cycles. Astrophys. J. 880(2):113. https://doi.org/10.3847/1538-4357/
ab2718, https://arxiv.org/abs/arXiv:1811.01363 [astro-ph.SR]

Hazra G, Karak BB, Choudhuri AR (2014) Is a Deep One-cell Merid-
ional Circulation Essential for the Flux Transport Solar Dynamo?
Astrophys. J. 782:93. https://doi.org/10.1088/0004-637X/782/2/93,
https://arxiv.org/abs/arXiv:1309.2838 [astro-ph.SR]

Hazra G, Choudhuri AR, Miesch MS (2017) A Theoretical Study of the Build-
up of the Sun’s Polar Magnetic Field by using a 3D Kinematic Dynamo
Model. Astrophys. J. 835:39. https://doi.org/10.3847/1538-4357/835/1/39,
https://arxiv.org/abs/arXiv:1610.02726 [astro-ph.SR]

Howe R, Christensen-Dalsgaard J, Hill F, et al (2005) Solar Convection-Zone
Dynamics, 1995-2004. Astrophys. J. 634(2):1405–1415. https://doi.org/10.
1086/497107

Hoyng P (1993) Helicity fluctuations in mean field theory: an explanation for
the variability of the solar cycle? Astron. Astrophys. 272:321

Jha BK, Choudhuri AR (2021) A theoretical model of the near-surface shear
layer of the Sun. Mon. Not. Roy. Astron. Soc. 506(2):2189–2198. https://
doi.org/10.1093/mnras/stab1717, https://arxiv.org/abs/arXiv:2105.14266
[astro-ph.SR]

Jiang J, Chatterjee P, Choudhuri AR (2007) Solar activity fore-
cast with a dynamo model. Mon. Not. Roy. Astron. Soc.
381:1527–1542. https://doi.org/10.1111/j.1365-2966.2007.12267.x,
https://arxiv.org/abs/arXiv:0707.2258

Karak BB (2010) Importance of Meridional Circulation in Flux Transport
Dynamo: The Possibility of a Maunder-like Grand Minimum. Astro-
phys. J. 724:1021–1029. https://doi.org/10.1088/0004-637X/724/2/1021,
https://arxiv.org/abs/arXiv:1009.2479 [astro-ph.SR]

Karak BB, Choudhuri AR (2011) The Waldmeier effect and the flux transport
solar dynamo. Mon. Not. Roy. Astron. Soc. 410:1503–1512. https://doi.org/
10.1111/j.1365-2966.2010.17531.x, https://arxiv.org/abs/arXiv:1008.0824
[astro-ph.SR]

Karak BB, Choudhuri AR (2012) Quenching of Meridional Circulation in

https://doi.org/10.1093/mnras/stx2152
https://arxiv.org/abs/1708.05204
https://doi.org/10.3847/1538-4357/ab2718
https://doi.org/10.3847/1538-4357/ab2718
https://arxiv.org/abs/1811.01363
https://doi.org/10.1088/0004-637X/782/2/93
https://arxiv.org/abs/1309.2838
https://doi.org/10.3847/1538-4357/835/1/39
https://arxiv.org/abs/1610.02726
https://doi.org/10.1086/497107
https://doi.org/10.1086/497107
https://doi.org/10.1093/mnras/stab1717
https://doi.org/10.1093/mnras/stab1717
https://arxiv.org/abs/2105.14266
https://doi.org/10.1111/j.1365-2966.2007.12267.x
https://arxiv.org/abs/0707.2258
https://doi.org/10.1088/0004-637X/724/2/1021
https://arxiv.org/abs/1009.2479
https://doi.org/10.1111/j.1365-2966.2010.17531.x
https://doi.org/10.1111/j.1365-2966.2010.17531.x
https://arxiv.org/abs/1008.0824


Springer Nature 2021 LATEX template

24 Flux transport dynamo model

Flux Transport Dynamo Models. Solar Phys. 278:137–148. https://doi.org/
10.1007/s11207-012-0142-2, https://arxiv.org/abs/arXiv:1111.1540 [astro-
ph.SR]

Karak BB, Choudhuri AR (2013) Studies of grand minima in sunspot cycles
by using a flux transport solar dynamo model. Research in Astronomy
and Astrophysics 13:1339. https://doi.org/10.1088/1674-4527/13/11/005,
https://arxiv.org/abs/arXiv:1306.5438 [astro-ph.SR]

Karak BB, Jiang J, Miesch MS, et al (2014a) Flux Transport Dynamos: From
Kinematics to Dynamics. Space Sci. Rev. 186:561–602. https://doi.org/10.
1007/s11214-014-0099-6

Karak BB, Kitchatinov LL, Choudhuri AR (2014b) A Dynamo Model of
Magnetic Activity in Solar-like Stars with Different Rotational Veloci-
ties. Astrophys. J. 791:59. https://doi.org/10.1088/0004-637X/791/1/59,
https://arxiv.org/abs/arXiv:1402.1874 [astro-ph.SR]

Kitchatinov LL, Olemskoy SV (2012) Solar Dynamo Model with Diamag-
netic Pumping and Nonlocal α-Effect. Solar Phys. 276:3–17. https://
doi.org/10.1007/s11207-011-9887-2, https://arxiv.org/abs/arXiv:1108.3138
[astro-ph.SR]

Kitchatinov LL, Ruediger G (1995) Differential rotation in solar-type stars:
revisiting the Taylor-number puzzle. Astron. Astrophys. 299:446
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